Eigenvalues and Characteristic Equation

IMPORTANT

Eigenvalues and Characteristic Equation: Overview

This topic covers concepts, such as Inverse of a Matrix Using Given Polynomial Equation, Characteristic Equation (Polynomial) of a Matrix, and Eigenvalue of Characteristic Equation of a Matrix.

Important Questions on Eigenvalues and Characteristic Equation

HARD
IMPORTANT

If  A=3211,  What would be the values of a and b such that A2+Aa+bI=O ? Also find  A1 .

HARD
IMPORTANT

If  A=3112  then what would be the value of  A1

MEDIUM
IMPORTANT

If A=15λ10, A-1=αA+βI and α+β=-2, then 4α2+β2+λ2 is equal to :

MEDIUM
IMPORTANT

Let matrix A=5-30-350002X be a non-zero matrix of order 3×1 and c be a real number. If A2X=cAX. Then the number of distinct values of c is

MEDIUM
IMPORTANT

Let A be a 2×2 matrix with real entries such that zero is the only solution of the equation A-xI=0. Then

MEDIUM
IMPORTANT

Let A be a 2×2 matrix with real entries such that zero is the only solution of the equation detA-xI=0. Then

MEDIUM
IMPORTANT

Let a matrix A=2312, then it will satisfy the equation

HARD
IMPORTANT

Let A=12101-13-11 then A-1 is equal to

HARD
IMPORTANT

Consider matrix A=2112.
If A-1=αI+βA where α,βR, then α+β is equal to (Where A-1 denotes inverse of matrix A) -

MEDIUM
IMPORTANT

If A3=0, then I+A+A2 equals

EASY
IMPORTANT

If A is a non-singular matrix and (A-2 I)(A-4 I)=O, then 16A+43A-1=

MEDIUM
IMPORTANT

If A=101110010 and I=100010001, then A-1 equals

EASY
IMPORTANT

If A2-A+I=O, then the inverse of A is

MEDIUM
IMPORTANT

If A2-A+I=0, then the inverse of A is

HARD
IMPORTANT

If A3= O , then I+A+A2 equals

EASY
IMPORTANT

If A2-A+I=0, then the inverse of A is

MEDIUM
IMPORTANT

The characteristic roots of the matrix1  0  02  3  04  5  6 are

EASY
IMPORTANT

If A=[31-12] andI=[1001], then the correct option is